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SUMMARY

Results are presented from a wind-tunnel investigation in helium flow at a

_h number of 15.4. The models were square-planform, double-wedge, shaft-mounted

•foils with leading- and trailing-edge radii of O, i, 3, and 6 percent chord.

general, the tests indicate that bluntness effects on the model flutter char-

_eristics are stabilizing as the leading-edge radius is increased from 0 to

_ercent of the chord_ but then become destabilizing with further increase in

mtness.

Results of flutter calculations made by using Newtonian theory aerodynamics

L a combination of Newtonian theory and piston theory aerodynamics in conjunc-

_n with an uncoupled two-mode analysis are compared with experimental results.

piston-theory results accurately predicted flutter speeds for the models with

_harp leading edge. The Newtonian theory, although conservative_ gave better

_dictions than the Newtonian-piston theory for the blunt-leading-edge models.

INTRODUCTION

Airfoils on very high-performance aircraft and missiles frequently have

mted leading edges to alleviate the aerodynamic-heating problem. It is perti-

_t, therefore, to investigate the effect of bluntness on the flutter of airfoils

the hypersonic range. Double-wedge models have often been used in high-speed

itter investigations (refs. i to 4) and the effect of leading-edge bluntness on

flutter of such models has been studied in the Mach number region from 0.7 to

36 (ref. i). It is the purpose of this paper to extend the study of reference i

a Mach number of 15.4 upon the basis of tests of double-wedge models in helium,

which the bluntness of the leading edges was varied systematically over a range

radii from 0 to 6 percent of the chord.

In addition to further experimental studies_ the need exists for evaluation

available analytical methods for the prediction of aeroelastic phenomena at

_h speeds. In this report two-degree-of-freedom flutter calculations were made

r the various models tested by using the first two uncoupled modes in conjunc-

Dn with Newtonian theory aerodynamics and a combination of Newtonian and piston



theory aerodynamics. These two theoretical methods were evaluated by comp_riso
with the experimental results.

SYMBOLS

b

ff

fh

fn

m

r_

V

xo

Xcg

Ycg

wing semispan, ft

flutter frequency, cps

flapping frequency, cps

natural frequency of nth mode (n = i and 2), eps

pitching frequency (bending degree of freedom restrained), cps

mass moment of inertia about pitch axis, slug-ft 2

mass, slugs

radius of gyration of model_ referred to pitch axis, , nondimensi

free-streamvelocity, ft/sec

pitch-axis location measured from leading edge_ percent chord

distance from leading edge to center of gravity, percent chord

distance from root chord to center of gravity, percent semispan

nondimensional mass ratio (ratio of mass of model to mass of volume of

test medium contained in a solid generated by revolving each chord

about its midpoint, length of solid being wing semispan)

flutter frequency, radians/sec

frequency of nth mode (n = i, 2), radians/sec

Subscripts:

av

div

exp

th

average

divergence

experimental results

theoretical results
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APPARATUS

The tests were performed in the 24-inch-diameter nozzle of the Langley hyper-
_ic aeroelasticity tunnel, which uses helium as a test medium. The tunnel has
_ontoured nozzle designed to generate a uniform flow at a Machnumberof about

A photograph of this blowdowntunnel is shownin figure i.

Helium is supplied to the stagnation chamberat pressures up to 1,200 ib/sq in.,
_mwhich dynamic pressures up to 595 ib/sq ft are obtainable. The downstream

of the tunnel is connected to a vacuumchamberwhich can be operated at pres-
:es as low as 1/2 inch of mercury absolute. With the available high-pressure
Lium supply, test runs were of approximately 5-second duration.

Test-section Machnumberdistributions as obtained from impact-tube surveys
presented in figures 2(a) and 2(b). Figure 2(a) showsthat the average Mach

_er at a given point was about 15.4. Also shownis that the Machnumber
mined practically constant for a given stagnation pressure. Figure 2(b) shows
_t there was little variation of Machnumberover the length of the test section.

The models were mountedon a reflection plane which was supported 6.8 inches
)m the tunnel wall as shownin figure 3. The reflection-plane support structure

designed to _nsure that the model was out of the tunnel boundary layer and in
region of uniform flow. A sketch of the tunnel test section showing its over-

[ dimensions and the location of the model and its support structure is pre-
_ted in figure 4. Machnumber surveys have been madefrom the reflection plane
ross the diameter of the test section along the model location. The results

shownin figure 5- It appears that the reflection-plane leading edge was in
region of undisturbed flow; however, a disturbed region was building up along

reflection-plane surface as the flow movedrearward. Even so, in the vicinity
the model trailing edge, the disturbed region covered less than 15 percent of

a span. The tip of the model was in uniform flow and not in the boundary layer
3mthe opposite tunnel wall.

Provision was madefor a clamping device which was located at the junction
the model shaft and reflection plane in the support structure. This clamping

vice was used to restrain the model during the tunnel starting transient, and

so to avoid destruction of the model when flutter occurred. Thus the same model

ald be used for more than one test.

MODELS

The two series of models tested each had semispan aspect ratios of 1.0, zero

eep, double-wedge profile shapes, and no taper. The difference between the two

ries was that one had a lO-inch semispan whereas the other had a 6-inch semi-

an. Each series consisted of four models of varying leading-edge bluntness;

ey had leading- and trailing-edge radii of O_ l_ 3_ and 6 percent of their chord.

photograph of the lO-inch models is shown in figure 6. The models were sup-

rted by a shaft which was an integral part of the aluminum-alloy core of the



model and which was clampedat the tunnel wall. Holes were drilled in the cot
and lead strips were added in order to achieve the desired mass and inertia pr
erties. Then balsa woodwas glued to the core to form the airfoil contour. Th
model construction is shownin figure 7. The models were designed as rigid
bodies mountedon a soft spring (the shaft) in order to provide a simple model
with well-defined structural properties. Therefore, the structural variables
were isolated and the aerodynamic effects morepronounced.

PHYSICALPARAMETERS

The massparameters of the models are listed in table I along with pertine
dimensions. The massof the model shaft is not included in the data shown. T_
pitch axis of all the models was at the 35-percent-chord position with the pane
center of gravity located at 53.5(±0.9) percent chord and 50.0(±1.5) percent se
span. All models were vibrated with an interrupted-air-jet shaker to determine
the natural frequencies and nodal patterns. Typical nodal patterns for the mod
are shownin figure 8. In all cases examined, the third and fourth natural fre
quencies were well above the first and second natural frequencies. The first t
coupled frequencies as well as the first two uncoupled frequencies are listed i
table I. The first uncoupled frequency, flapping, was calculated by using the
measuredmassproperties. The second uncoupled frequency, pitching, was found_
experimentally. Because the second natural node line was skewed, it was necess
to restrict the model deflection at an assumedpitch-axis location, 35 percent
chord at the model tip, in order to measure the uncoupled pitching frequency.
first two uncoupled modeshapes for the models were determined in the followin@
manner: For the flapping modethe model was vibrated at its first natural fre-
quency by meansof an air shaker, and the amplitude of vibration was measureds
various stations with time-exposure photographs. This modeshape is presented
figure 9(a). Becausea slight amount of pitching is evident, the model was
assumedto be rigid and the deflection along the 50-percent-chord line (center-
of-gravity location) was used in the calculations. For the pitching modethe
model was vibrated in its restricted uncoupled pitching mode, and time-exposure
photographs were used to measurethe deflection. The pitching-mode shape is pl
sented in figure 9(b) and was used in the flutter calculations. In addition, t
fundamental uncoupled modeshape was calculated for a system consisting of a ri
beamon a flexible, weightless shaft and the result agreed well with the experi
mentally determined uncoupled flapping-mode shape.

TESTPROCEDURE

Models were mounted in the test section at zero angle of attack. After
installation in the tunnel and just prior to the test run, the measurementsfo_
the first two natural frequencies of the model were checked. The tunnel was th
evacuated to a low pressure. The model was restrained, and a control valve up-
stream of the test section was opened and flow established at a low dynamic pre
sure. At this time the model was released and, with the Machnumberremaining
constant, dynamic pressure was increased until flutter was encountered or the



kimumtunnel operating conditions were reached. At that point the model was
_in restrained and the tunnel flow stopped. Stagnation temperature and pressure
re recorded on an oscillograph throughout the test. Signals from resistance-
pe strain gages mountedon the model shaft were also recorded and their response
s used to determine the occurrence of flutter and the flutter frequency. These
ta were later correlated with the tunnel conditions. High-speed motion pictures
the flutter of most of the models were obtained.

RESULTSANDDISCUSSION

Experimental Investigation

The basic data from the tests are presented in table II. The test-section
nditions at flutter as well as the flutter frequency ratio _f/_2 and velocity-
dex parameter V/ba_21_ are listed for each test run. The experimental results
•omtable II are presented in figures i0 and ii as the variation of the velocity-
Ldexparameter and frequency ratio with leading-edge radius. In figure 12, some

the data of reference I are combinedwith the present data and presented as the
0riation of velocity-index parameter V/_2_ with Machnumberfor the various
_dels.

Examination of the data for the lO-inch model in figure i0 reveals that the
_utter speed increases as the leading-edge radius is increased from 0 to i per-
_nt of the chord, and then the trend reverses; that is, the flutter speed
_creaseswith further bluntness. During tests of the lO-inch model with a
_ading-edge radius of 6 percent chord, the tunnel would not start; that is_ the
Lowcould not be established in the test section at M = 15.4.

In an attempt to investigate the 6-percent-chord leading-edge radius, and
Lso to explore size effects, the 6-inch-chord models were constructed and tested.
le flutter trend remained the samefor the models with the 0-, i-, and 3-percent-
_ord leading-edge radii, as can be seen in figure i0. However, no flutter was
_countered for the 6-percent-chord leading-edge models; instead the model
Lverged. The divergence was quite abrupt, the model striking the reflection
_anewith little or no oscillatory displacement.

The flutter modewas a combination of the flapping and pitching natural
_des. Figure ii shows the flutter frequency ratio as a function of leading-
dge radii. For the models with sharp and 1-percent-chord leading edges, the
lutter frequency ratios ranged from 0.47 to 0.59, whereas for the models with
-percent-chord radii, it decreased to between 0.31 and 0.37. Fromthis result
mdfrom observations of the films of the test it is believed that for the models
ith 3-percent-chord radius the flutter condition was approaching the divergence
ondition and thus the flutter frequency was forced toward zero.

In figure 12_ someof the results of reference i have been combinedwith
hose reported in this paper to showthe variation of the velocity-index param-
ter over a wide range of Machnumber. The models with sharp and 1-percent-
hord radius exhibit the sametrend of consistently increasing values of the
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par_nneter with increasing Math number. The model with 3-percent-chord radius

warrants special attention, for in this case the velocity-index para_leter_ rat}

than increasing with Math n_iber, reverses the trend between M = 7.0 and 15.%_

and at M = 15.4 the parameter has the same value as at M : 2.6. The models

with leading-edge radii of 6 percent of the chord diverged at all Mach numbers

above about 1.6. At a Mach number of 15.4, the value of the velocity-index

par_mneter for divergence was about the same as at _ch 1.6. It should be noted

that over the Mach number range the minimum value of the velocity-_ndex paramet_
occurred near M : i.

Theoretical Investigation

Lighthill_ in reference 5_ developed a simplified aerodynamic theory which

has become known as "piston theory." Ashley and Zartarian (ref. 6) have appliec

it to the flutter problem. They point out that the theory does not consider

three-dimensional effects_ but it should be noted that with increase in Mach nm

bet these effects should become less important. In addition, a requirement for

good accuracy is that the downwash velocity at the wing surface divided by the

speed of sound must be less than I. This requirement, besides being a limit on

airfoil thickness_ also implies that piston theory will not be applicable near

the leading edge of blunt-nosed airfoils where the surface slopes are large. II

has been suggested in reference 7 that the use of New-ionian theory would remove

the limitation due to bluntness. The Newtonian theory would be used over the

leading-edge radius and piston theory over the remainder of the airfoil. Newtor

theory_ even though it is based upon simple impact considerations, has given go(

aerodynamic predictions in hypersonic flow (ref. 8).

Two-degree-of-freedom flutter calculations were made for the models by usir

the first two uncoupled modes in conjunction with modified Newtonian-piston thee

and modified Newtonian theory aerodynamics. The calculated uncoupled flapping

frequencies and the experimentally determined pitching frequencies given in
table I were used in the solution of the flutter determinant. Generalized mass

terms were calculated from the experimentally measured mass, moment of inertia

about the pitch axis, and center-of-gravity position as given in table I. The

mass of the shaft was not included_ and the panel mass was assumed to be unifor_

over the span, which was very nearly the case. The results of these calculatio_

are listed in table III and presented in figures 13 and 14. Figure 13 presents

the ratio of experimental to calculated flutter speed as a function of leading-

edge bluntness. In figure 13(a) the calculated flutter-speed data are presented

for the lO-inch-chord models. There was excellent agreement between experiment

and piston theory for the sharp-leading-edge models_ whereas the Newtonian theor

was unconservative. With increase in bluntness both the Newtonian-piston and

Newtonian theories became conservative_ with the Newtonian theory giving slightl

better agreement with the experiment. Figure 13(b) presents the same data for t

6-inch-chord models with about the same results; although the agreement for the
blunt airfoils is better.

The ratios of experimental to theoretical flutter frequency are presented i

figure 14 as a function of leading-edge radius. The Newtonian-piston theory pre

dicted the flutter frequency somewhat more accurately_ although neither theory
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_dicted the decrease in flutter frequency which occurred for the 3-percent-

ding-edge model.

In an effort to investigate the divergence of some of the models analytically,

e Newtonian theory flutter determinant was expanded and the flutter frequency

equal to zero. These divergence results are presented in figure 15 along with

Newtonian flutter theory and the average experimental results. According to

e theory the flutter speed of each model was lower than its divergence speed.

t it should be noted that the calculated divergence speed was approaching the

utter speed with increase in model bluntness.

SUMMARY OF RESULTS

Wind-tunnel tests at a Mach number M of 19.4 on square-planform, all-movable-

ntrol-type models having leading- and trailing-edge radii from 0 to 6 percent

ord and double-wedge profiles indicated a definite effect of airfoil bluntness

their aeroelastic characteristics. The tests indicated that bluntness effects

re stabilizing as the leading-edge radius was increased from 0 to about i per-

nt of the chord. A further increase in bluntness had a destabilizing effect on

e flutter characteristics.

For the models with sharp leading edges and 1-percent-chord leading-edge

dii the stabilizing trend was consistent with data obtained at lower Mach num-

rs in NASA TN D-984. For the 3-percent-chord leading-edge model there was a

versal in trend with Mach number between M = 7.0 and M = 15.4. Within this

ch number range there was a destabilizing trend, and at M = 15.4 the model

countered flutter at about the same velocity-index parameter as at M = 2.6.

As decrease in stability was believed to be due to the fact that the flutter

eed was close to the divergence speed. At M = 15.4, increasing the airfoil

nntness to 6 percent of the chord led to divergence, as it did at lower Mach

mbers. Kowever, the velocity-index parameter for divergence at M = 15.4

creased to about the same value as at M = 1.6.

Flutter calculations made by using Newtonian theory aerodynamics and a com-

nation of Newtonian theory and piston theory aerodynamics, both in conjunction

th an uncoupled two-mode analysis, indicated that the Newtonian-piston theory,

Zhough conservative, more closely predicted the flutter speed for the models

th blunt leading edges. Neither theory predicted the flutter frequency well.

The Newtonian theory failed to predict divergence for the 6-percent-chord

_ading-edge model, but instead predicted a flutter speed lower than the diver-

_nee speed. The theory did show that the divergence speed was approaching the

utter speed with increasing leading-edge bluntness.

tngley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., July 17, 1962.
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wedge airfoils with blunt leading edges.
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Figure 13.- Ratio of experimental to calculated flutter velocity as a

function of leading-edge radius.
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Figure 15.- Velocity-index trends with leading-edge bluntness.

_6
NASA-Langley, 1962 L-2034



Theory

Newtonian

--[]-- Newtonian-piston

d
..4

>.

U

O"

I

,-4

4_

0

5

0
4._

4.o

.T.t

e't
N

U.I

1.0

1.0

- 0

[] _'-''-0 _

o
/

• 4L 1 I I I

0 1 g 3

.8

.6

.4

(a) lO-inch models.

[]

O_ ___ _ _

o

[]
0

I I I I

0 1 2 3

Leading-edge radius, percent chord

(b) 6-inch models.

Figure 14.- Variation of experimental to theoretical flutter-frequency

ratio as a function of leading-edge radii.
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